Experimental stability analysis of neural networks in classification problems with confidence sets for persistence diagrams
نویسندگان
چکیده
We investigate classification performance of neural networks (NNs) based on topological insight in an attempt to guarantee stability their inference. NNs which can accurately classify a dataset map it into hidden space while disentangling intertwined data. sometimes acquire forcible mapping disentangle the data, and this generates outliers. The around outliers is unstable because outputs change drastically. Hence, we define stable mean that they do not generate To possibility existence outliers, use persistent homology method estimate confidence set for persistence diagrams. combined enables us test whether focused geometry topologically simple, is, no In work, MNIST CIFAR-10 datasets relationship between characteristics with several NNs. Investigation results show accuracy all superior, exceeding 98%, even though transformed simple. Results also shown by accurate convolutional Therefore, conclude presented investigation necessary NNs, particular deep classification.
منابع مشابه
Confidence Sets for Persistence Diagrams
Persistent homology is a method for probing topological properties of point clouds and functions. The method involves tracking the birth and death of topological features as one varies a tuning parameter. Features with short lifetimes are informally considered to be “topological noise,” and those with a long lifetime are considered to be “topological signal.” In this paper, we bring some statis...
متن کاملrodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
CONFIDENCE SETS FOR PERSISTENCE DIAGRAMS By Brittany
Persistent homology is a method for probing topological properties of point clouds and functions. The method involves tracking the birth and death of topological features as one varies a tuning parameter. Features with short lifetimes are informally considered to be “topological noise,” and those with a long lifetime are considered to be “topological signal.” In this paper, we bring some statis...
متن کاملStability Analysis of Gradient-Based Neural Networks for Optimization Problems
| The paper introduces a new approach to analyze the stability of neu-ral network models without using any Lyapunov function. With the new method, we investigate the stability properties of the general gradient-based neural network model for optimization problems. Our discussion includes both isolated equilibrium points and connected equilibrium sets which could be unbounded. For a general opti...
متن کاملPersistence Diagrams as Diagrams: A Categorification of the Stability Theorem
Persistent homology, a central tool of topological data analysis, provides invariants of data called barcodes (also known as persistence diagrams). A barcode is simply a multiset of real intervals. Recent work of Edelsbrunner, Jabłoński, and Mrozek suggests an equivalent description of barcodes as functors R → Mch, where R is the poset category of real numbers and Mch is the category whose obje...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neural Networks
سال: 2021
ISSN: ['1879-2782', '0893-6080']
DOI: https://doi.org/10.1016/j.neunet.2021.05.007